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Synthesis of optically active imidazopyridinium salts
and the corresponding NHCs
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Abstract—A convergent synthesis of chiral imidazo-[1,5-a]-pyridinium salts is described by facile introduction of a stereogenic center
via the N2 substituent. Conversion of these optically active salts to the corresponding N-heterocyclic carbenes (NHCs) and their
trapping with sulfur followed by optical activity measurements are discussed.
� 2006 Elsevier Ltd. All rights reserved.
The isolation of stable N-heterocyclic carbene (NHC)
derivatives by Arduengo has led to recent studies of their
utility and chemistry.1 Imidazolium, triazolium, and
thiazolium salts are employed in a wide range of trans-
formations for organic synthesis. NHCs have served as
superb ligands in metal-catalyzed reactions2 in addition
to providing an unique chemistry enabling the use of
these heterocycles as organic catalysts.3 Importantly,
the use of optically active NHCs (Fig. 1) has led to the
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Figure 1. Representative chiral azolium salts.
development of a variety of new catalytic asymmetric
transformations for organic synthesis.3,4 Subtle stereo-
electronic effects are known to have a dramatic impact
on the chemistry of NHCs. Lassaletta5a and Glorius5b

have reported the synthesis of NHC derivatives based
on the imidazo-[1,5-a]-pyridinium ring system 10 (R 0@H)
and Miyashita has disclosed the use of imidazopyridi-
nium iodide 11 as a highly reactive catalyst.6 Herein we
describe a convergent synthesis of optically active imid-
azo-[1,5-a]-pyridinium salts and the in situ trapping of
the corresponding carbene derivatives.
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Many of the transformations catalyzed by NHCs3,4

employ the necessary catalyst by the in situ deprotonation
of the corresponding azolium salt. Excellent examples of
the applications of this strategy in accessing the NHCs
of interest are seen in Enders and Rovis’s studies
employing chiral triazolium salt precatalysts (e.g., 7
and 3, Fig. 1) in a variety of catalytic asymmetric reac-
tions. Additionally, the representative use of optically
active imidazolium salts (e.g., 8 and 9, Fig. 1) by
in situ deprotonation and organometallic complex
formation is seen in the preparation of catalysts by
Hoveyda4k and Grubbs4w for the olefin metathesis reaction.

We envisioned a convergent and practical synthesis of
optically active imidazopyridinium trifluoromethane-
sulfonate 12 (Scheme 1) by the condensation of a chiral
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primary amine 14 with a suitable pyridine carboxalde-
hyde 15 followed by imidazolium formation.7

Under optimized conditions, the condensation of com-
mercially available pyridine-2-carboxaldehyde 15a with
(S)-alpha-methylbenzylamine (14a, 98% ee) provided
imine 13a in a 97% yield (Scheme 2). The treatment of
imine 13a8 with 2,2-dimethyl-propionic acid chloro-
methyl ester and anhydrous silver trifluoromethane-
sulfonate in dichloromethane at 40 �C for 15 h in
the dark afforded the desired imidazopyridinium tri-
fluoromethanesulfonate 12a in a 73% isolated yield.
Imidazo[1,5-a]-pyridinium trifluoromethanesulfonate was
readily purified by flash column chromatography (Scheme
2).

Given the marked enhancement in the stability of the
corresponding carbene derivative of imidazopyridinium
salts with a C5-substituent,5a we examined their synthe-
sis via the optimized conditions described above. The
condensation of 6-methylpyridine-2-carboxaldehyde
15b, prepared from commercially available 2,6-di-
bromopyridine in two steps (nBuLi, MeI, THF, �78 �C;
nBuLi, DMF),9 with (S)-alpha-methylbenzylamine
(14a, 98% ee) gave the corresponding imine 13b, which
was converted to the desired 5-methylimidazopyridi-
nium trifluoromethanesulfonate (�)-12b ð½a�20

D �43 (c
0.49, CHCl3)) in a 68% overall yield (Scheme 3).10 With
the 5-methyl substituent in place, deprotonation of 12b
(1.0 equiv NaH, 4 mol % KOtBu, THF (0.2 M), 23 �C,
3 h) afforded the corresponding NHC 16 as a viscous
paste (80–85% yield), with characteristic 1H NMR reso-
nances11 consistent with those reported by Lassaletta for
a related optically inactive derivative.5a

We also examined the synthesis of the doubly substi-
tuted (C1 and C5) imidazopyridinium derivative 12c
(Scheme 4). Molecular model analysis suggested that
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the minimization of the steric interactions between the
N2-substituent (alpha-methyl benzyl group) with
the C1-phenyl substituent would result in projection of
the substituents at the stereogenic center toward the
N2–C3–N4 environment. Aza-benzophenone derivative
15c,12 prepared from 2,6-dibromopyridine in two steps
(nBuLi, MeI, THF, �78 �C; nBuLi, PhCON(Me)OMe),9

was condensed with amine 14a to provide the corre-
sponding imine 13c in a 96% yield as a mixture of keto-
imine isomers (47:53 by 1H NMR). The condensation of
ketone 15c with amine 14a required more forcing condi-
tions as compared to that used with pyridine-2-carbox-
aldehyde derivatives 15a,b. Ketoimine 13c, as a
mixture of isomers, was converted to the corresponding
imidazopyridinium salt 12c in a 40% isolated yield
(Scheme 4).13

Direct measurement of the enantiomeric excess of the
imidazopyridinium derivatives described above by chiral
HPLC analysis was not optimal. We envisioned trap-
ping of the corresponding in situ generated NHCs, pre-
pared by deprotonation of the imidazopyridinium salts,
in the form of stable thiourea14 derivatives for chiral
HPLC analysis (Scheme 5). The treatment of imidazo-
pyridinium trifluoromethanesulfonates 12b and 12c with
KOtBu in the presence of elemental sulfur provided the
corresponding thiourea derivatives 17a and 17b in 82%
and 78% yield, respectively. The enantiomeric excess of
the thiourea derivatives 17a,b were found to be P98%
ee, thus illustrating that (1) the stereocenter introduced
by the chiral amine is not compromised during the syn-
thesis of the imidazopyridinium salts, and (2) the corre-
sponding NHCs generated by in situ deprotonation are
formed without epimerization.
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We have described a short and convergent synthesis of
optically active imidazo-[1,5-a]-pyridinium derivatives.
The synthesis of these imidazopyridinium salts and their
in situ deprotonation to the corresponding NHCs occurs
without any loss in optical activity. Trapping of the
in situ generated NHC derivatives as the corresponding
isolable thiourea derivatives allows a simple method for
enantiomeric excess determination. This short synthetic
sequence allows a multi-gram synthesis (e.g., >4 g-scale
of (�)-12b)10 of these optically active NHC precursors.
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